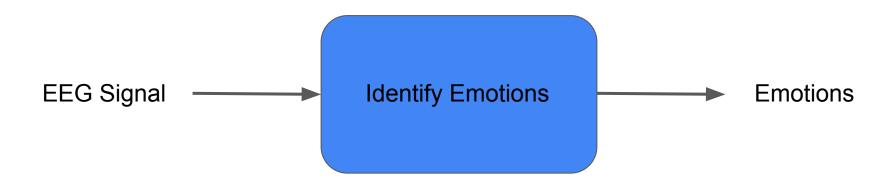
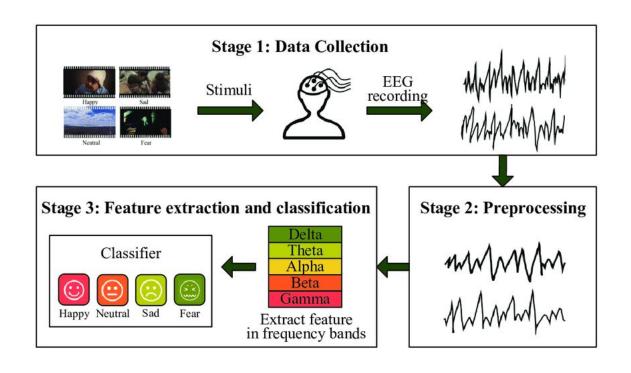
EEG Emotion Recognition - Unified Framework

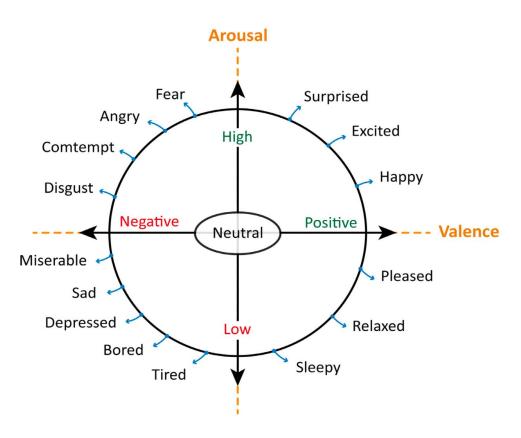



Natia Kukhilava Tatia Tsmindashvili Rapael Kalandadze Sofi Katamadze

Philipp Müller Benedikt Emanuel Wirth Laura Ferrari

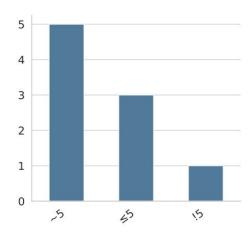
Problem - Emotion Recognition

Problem - Emotion Recognition


How it all started

- Introduce the field and find SOA
- 2. Problem Almost impossible to find SOA
- 3. Chose top models and top datasets and run pipeline for them
- 4. Problem Hard to run baseline
- 5. Decided to write paper about problems and try to solve them

Key characteristics


- 1. Dataset
- 2. Data splitting
- 3. Ground truth
- 4. Evaluation metrics

Valence-Arousal Scale

Dataset

1. Imbalance datasets

Dataset

- 1. Imbalance datasets
- 2. Session duration: 1-4 min

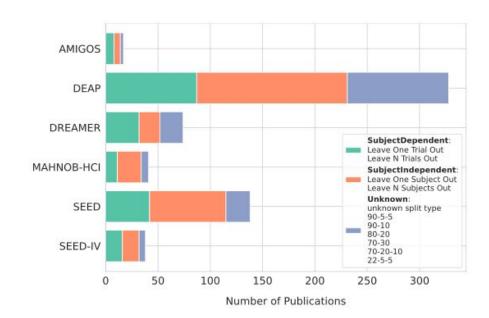
Dataset

- 1. Imbalance datasets
- 2. Session duration: 1-4 min
- 3. Different devices

Data splitting - Subject Independent

Train			
Person 1	Video 1	Video 2	Video 3
Person 2	Video 1	Video 2	Video 3
Person 3	Video 1	Video 2	Video 3

Test

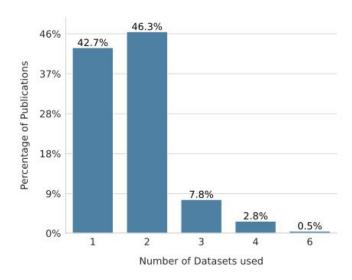

Person 4 Video 1 Video 2 Video 3

Data splitting - Subject Dependent

	Train		Test
Person 1	Video 1 Video 2	Video 3	Video 4
Person 2	Video 1 Video 2	Video 3	Video 4
Person 3	Video 1 Video 2	Video 3	Video 4

Data splitting

- 1. Subject Independent (LOSO)
- 2. Subject Dependent (LOTO)


Ground Truth

Ground Truth

	Ground Truth	Accuracy	F1 Weighted	F1
Arousal	4.5	0.63 ± 0.24	0.57 ± 0.26	0.73 ± 0.24
	5	0.47 ± 0.16	0.44 ± 0.16	0.53 ± 0.22
	4.5	0.53 ± 0.20	0.53 ± 0.21	0.56 ± 0.26
	5	0.49 ± 0.15	0.47 ± 0.15	0.45 ± 0.23
Valence	4.5	0.52 ± 0.10	0.49 ± 0.10	0.48 ± 0.20
	5	0.53 ± 0.10	0.48 ± 0.12	0.43 ± 0.18
	4.5	0.55 ± 0.09	0.51 ± 0.12	0.56 ± 0.18
	5	0.52 ± 0.09	0.48 ± 0.12	0.48 ± 0.15

Evaluation

EEGain

- 6 widely-used datasets
- 4 models
- Transformations
- Split types
- Metrics

```
!python3 run_cli.py \
--model_name=TSception \
--data name=MAHNOB \
--data path="..." \
--log dir="logs/" \
--overal_log_file="logs_mahnob_loto.txt" \
--label_type="V" \
--num epochs=2 \
--batch size=32 \
--lr=0.001 \
--sampling_r=128 \
--window=4 \
--weight decay=0 \
--label_smoothing=0.01 \
--dropout_rate=0.5 \
--num_classes=2 \
--channels=32 \
--split type="L0T0"
```

EEGain - Validation

	Arousal/Valence	Model	Accuracy	F1 Weighted	F1
Mahnob	Arousal	Tsception	0.61 ± 0.13	0.34 ± 0.22	0.60 ± 0.13
	Arousal	EEGNet	0.58 ± 0.15	0.31 ± 0.20	0.57 ± 0.15
	Arousal	DeepConvNet	0.59 ± 0.14	0.37 ± 0.21	0.58 ± 0.14
	Arousal	ShallowConvNet	0.61 ± 0.15	0.30 ± 0.22	0.59 ± 0.14
	Arousal	Random	0.57 ± 0.13	0.32 ± 0.09	0.53 ± 0.05
	Valence	Tsception	0.62 ± 0.10	0.43 ± 0.14	0.61 ± 0.10
	Valence	EEGNet	0.59 ± 0.11	0.40 ± 0.14	0.58 ± 0.11
	Valence	DeepConvNet	0.61 ± 0.11	0.43 ± 0.15	0.60 ± 0.11
	Valence	ShallowConvNet	0.61 ± 0.10	0.38 ± 0.15	0.59 ± 0.10
	Valence	Random	0.53 ± 0.13	0.33 ± 0.09	0.53 ± 0.05
Deap	Arousal	Tsception	0.60 ± 0.09	0.63 ± 0.09	0.60 ± 0.09
	Arousal	EEGNet	0.59 ± 0.12	0.64 ± 0.17	0.58 ± 0.12
	Arousal	DeepConvNet	0.62 ± 0.1	0.68 ± 0.16	0.60 ± 0.10
	Arousal	ShallowConvNet	0.62 ± 0.11	0.67 ± 0.16	0.60 ± 0.09
	Arousal	Random	0.53 ± 0.10	0.54 ± 0.18	0.53 ± 0.10
	Valence	Tsception	0.60 ± 0.11	0.60 ± 0.17	0.59 ± 0.11
	Valence	EEGNet	0.57 ± 0.10	0.64 ± 0.13	0.56 ± 0.10
	Valence	DeepConvNet	0.56 ± 0.09	0.63 ± 0.11	0.56 ± 0.09
	Valence	ShallowConvNet	0.58 ± 0.09	0.66 ± 0.11	0.56 ± 0.08
	Valence	Random	0.50 ± 0.07	0.54 ± 0.10	0.50 ± 0.07

Q & A

Scan for EEGain